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@ Managing complex ecosystems

e« Managing anthropogentic pressures
often requires information on the
distribution of key natural values.

e Presence-only datasets provide a
valuable source of information for
describing these natural values.

e At broad spatial scales we often need
simple, but clear ways to quantify these
values.
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Ecosystems are complex
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@ Managing complex ecosystems

Local / regional (" Climate change drivers |

For managing the environment inferences about ecosystem Activities E e [
are required. Often questions are about unobserved
properties. Impacts
o Assemblages. A
« Ecoregions / bioregions. ( conat
 Functional groups, i
N MODEL
e Species groups.
e Communities. Posie  —> :
. I :’:l":‘ud LUR:LandUseRumff
° Gene‘nc groups \ CCA: Crustose Coraline Algae

But none of these are observed. Our solution is to pose
statistical models containing these/related constructs.
Management could be targeted at a fewer latent groups
rather than a large number of individual species.

Ecosystems are complex
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@ Species Archetype Models (SAMs)

Multiple Species Responses Species Archetype Responses

o Multivariate response (conditionally independent)
o Mixture of regressions, aka Species Archetype Models
(SAMs)
o Grouping species according to their responses to
the environment
o A relatively simple model used to understand how
many species jointly respond to environmental
conditions
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Clustering of species along a one dimensional gradient using SAMs
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@ Species Archetype Models (SAMs)

« Soft assignments (probabilistic)
e Intuitively:
o Perform a regression on each species, then
o Cluster the regression coefficients
e Finite mixture models allow for a one-step process
o Uncertainty propagation
o Statistical efficiency
o Likelihood based model selection and diagnostics
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@ Poisson process species archetype models

o Letusdefiney; = (y14,---,yn;j) ' asa vector of species j € {1,..., S} presence-only occurrences at observations at IV,

. : 2
locations in region A € R”.
o We assume there are P covariates observed at all sites x;.

The likelihood contribution of the j* species is:

K N;
Z Tk H F(Br; Yj)
k=i =1

o where f(By; yj) is a function of the conditional intensity A;;;, of species j at location ¢, conditional on archetype k.

e T} is the mixing proportion (satisfying 7, € (0,1) and Z£{=1 7, = 1), determining the proportion of species classified into
each of the K archetypes.
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@ Poisson process species archetype models

The log-conditional intensity is modelled as:

log(Aijk) = o +x/ B, + 1/ 8 + v

A(i, s, k) is the intensity function for each species, as each site, conditional on each archetype k.
a;j represents the species specific intercept.

X; represents environmental/habitat observed covariates.

By is a vector of archetype specific coefficients associated with the environmental/habitat effects.
u; represents a observation bias data, e.g distance from roads.

0 represents a spatial observation bias across all species occurrence records for {yj}S.
v; is a offset at site ¢, and can represent differences in spatial area or even a known 'plug-in' thinned process.
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@ Poisson process species archetype models

We estimate this model via numerical approximation, the approximate log-likelihood for the jth species and k" archetype as,

M;
log f1(B, 8 b ;> Yo, Wj) = Y wij(zij10g(Aijk) — Aije)
i=1
* Yp; is a vector of species-specific presences,
* Yo; = {¥n;41,- -+ Y, } is a vector of g quadrature locations for each species

w; = (wj;,...,w; ) stores the species-specific weights

M; = N; + qis the total number of presence and quadrature locations of the jth species.

We used a grid based design for quadrature scheme (Berman & Turner 1992; Warton & Shepard 2010), but others could be used
(e.g. Dirichlet tessellation).
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@ Poisson process species archetype models

« Estimation is done via a hybrid Expectation-Conditional Maximisation and Newton-Raphson approach to estimate the
above log-likelihood (Aitkin et al., 1996; Dunstan et al., 2013).
« We include in the initial starting values of «, 8, d and 7.

The steps include:

1. finding starting values and adding a small amount of random noise within the standard deviation of the estimated starting
values;

2. perform a limited number of initial ECM steps;

3. implement a Newton-Raphson maximiser until the model is converged

4. Doing this multiple fits per K (e.g. 10 fits per K)
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@ Simulation study

We compared a two-stage approach
(predicted and group) against a single
PPSAM.

Fitted four scenarios, each contained
1000 simulations.

Scenarios based on the rarity of species,
going from rare to more common.
Each simulation contained 100 species
within a simulated study area with a
single environmental gradient, and
single observation bias covariate.

A)
Simulated Covarites

Latitude

Intensity (i)

3 -3
Gradients

Archetypes Archetypet Archelype2

Archetype3

Simulated environmental and bias gradients. Three simulated archetypal

responses.
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@ Simulation study

-2

Intercept values (o)
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A) Comparison of Species Intercepts

Scenario 1

Scenario 2 Scenario 3 Scenario 4

Model
- Predict First

& Group
ES PPsAM

* True Values

Species-specific intercepts (o)

Estimated species-specific intercepts "«;" from the individual species-specific Poisson Processes and Poisson Process Species Archetype Models.
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@ Simulation study

B) Comparison of Archetype Slope Parameters

Scenario 1 Scenario 2
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Estimated archetype level estimates "3;," from the Predict First & Group approach, and Poisson Process Species Archetype Models.
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@ Simulation study

C) Comparison of Bias Parameters

Scenario 1 Scenario 2 Scenario 3 Scenario 4
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Bias values (0)

Estimated bias covariates ('d') we compared mean estimates (for each species) from Predict First & Group approach, and Poisson Process Species Archetype
Models bias value (estimated across all species).
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Predictive performance tests from the simulation study. A) Integrated Mean Square Error (IMSE) estimates for each of the four simulations. B) K
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@ New South Wales Myrtacece Case Study

o Myrtacece dataset contains 41769 occurrences
recorded for 296 species

e We took the 50 most common species with at least 100
presences

o We fitted either an PPSAM or 50 species-specific IPPMs

e The archetypes were fitted to fire frequency (FC),
annual minimum temperature (MNT), annual maximum
temperature (MXT), annual mean rainfall (Rain)

o Observation bias was fitted to distance from main roads
(D.Main) & distance from main urban centres (D.Urb).

New South Wales Myrtacece study area

15/ 26



@ New South Wales Myrtacece Case Study

PPSAM Modelling steps. 140000

o Multiple starts across 1 to 16 species archetype groups
(k)

« Select model k based on BIC.

e Check for groups with zero membership.

e Diagnostics via random quantile residuals.

No. Quad.
~o 1000
~o~ 5000
~e- 20000

130000

BIC

120000

IPPM Modelling steps.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Number of Archetypes

 Fit species-specific IPPMs.
o K-means cluster coefs.

BIC from PPSAM fits
e Select k based on BIC.
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@ New South Wales Myrtacece Case Study

A) PPSAM Predictions

Archetype 1 Archetype 2

»
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Archetype 11 Archetype 12
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PPSAM Predictions
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@ New South Wales Myrtacece Case Study

B) Predict First & Cluster Predictions

Archetype 1 Archetype 2 Archetype 3 Archetype 4 Archetype 5 Archetype 6
t ‘ £t
o ¢
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Archetype 7 Archetype 8 Archetype 9 Archetype 10 Archetype 11 Archetype 12
-
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‘ /7 P ]
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IPPM & Cluster Predictions
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e A bias towards smaller range restricted groups in two
stage approach.
o Two stage approach seems to select more clusters
based on information criteria
o Typically need to know the number of
groups/clusters for this approach to work (e.g. Hill
et al., 2020)
e Some ecologically relevant group such as:
o Wet sclerophyll forest (Archetypes 5-7)
o Dry sclerophyll woodland (Archetype 2-4)
o Heathland/sandplain (Archetypes 8-10)

A) PPSAM Predictions

Archetype 1

&

Archetype 7

Archetype 2

Archetype 8

Archetype 3 Archetype 4 Archetype 5
Archetype 9 Archetype 10 Archetype 11

PPSAM Predictions

@ New South Wales Myrtacece Case Study

Archetype 6
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Archetype 12 05
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@ New South Wales Myrtacece Case Study

» Posterior probabilties of a species
belong to an archetype/group is more
well mixed under PPSAMs

e The two stage approach tends to lump
most species into the same group and

pull out extremes.
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@ New South Wales Myrtacece Case Study

o Uncertainty quantification can be done
via bootstrapping (Cowling et al., 1996).

e Two step approach fails to transfer data
variance through to prediction at the
clustering step.

e Bayesian approaches could deal with
this, but you need to correct for label
switching when clustering posterior
predictions.

Archetype 7 Archetype 4 Archetype 1

Archetype 10

Lower CI

Lower CI

Lower CI

Lower CI

Archetype 8 Archetype 5 Archetype 2

Archetype 11

Lower Cl

Lower CI

Lower CI

Lower Cl

Mean Upper CI

Archetype 9 Archetype 6 Archetype 3

Archetype 12

Lower CI

Lower CI

Lower CI

Lower CI

Uncertainty in PPSAM predictions
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@ New South Wales Myrtacece Case Study

« We show that point process Species
Archetype Models allow for the
propagation of variance and uncertainty
from the data through to predictions.

e Improving inference made on multiple
species presence-only occurrence data.

e Or at least making it simpler to
understand biodiversity patterns for a
large number of species.

« However, it does not account for inter-
species correlation in occurrence as you
would see in a JSDM/GLLVM.

Uncertainty of archetypes predictions M

TN PN o
y 2 N .‘"’ PN\ / 2 \
[ fv [
7 7 L7
R G S
Uncertainties for Archetype One /

PPSAM framework
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@ sSome considerations and extensions

e Currently, PPSAM does not scale well
due as number of species, archetypes
and sites grow.

e Group selection/regularization is hard
and is often important for presence-only
data

e Luckily approximate SAMs (asSAM) are
actively being developed to deal with
these problem (Hui et al., In prep - see
his talk tomorrow)
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@ sSome considerations and extensions

Sampling |

o Integrated with other data sources to help better Dishiution

Blas taras Link Function | Likelihood |
Terms
correct observation bias (e.g Fithian et al., 2015) ] Y
. . PO +x,(s)" B, o log Poisson Point| | Esstl::::ai;esd
e Point patterns naturally extends to spatial models = oess Distribution
o e.g. Log-Gaussian Cox Process & a5
| | Latent GRF(S): PA E A "‘W:,.' 7, Coml[:)lgl’e_rrozntary N il J [i(s)ldata]
= Z(s) ~ GP(0,C(s,s')) is a Gaussian Process %
(GP) with mean zero and covariance function =
C, capturing spatial (and temporal if in scope) A 1 e | g Posson )
dependencies. J Z y /

o GRF on what? On bias? on species? on archetypes? User to Speciy Prespecified Map Output
on multiple?
o |ldentifiability might be a problem with many GRFs. Example of an integrated single species model using the RISDM package;
o Approximation will be important, e.g Vecchia Foster et al., 2024
approximation/basis functions.
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@ sSome considerations and extensions

e« How interpretable are species archetype models?

o We tend to think of distribution in terms of composition, especially for characterisation

o But, based on my experience experts and managers tend to think in terms of process,
or at least can conceptualise this more easily.

o Do we need to cluster or bicluster over composition and functional groups which allow
us to lean heavier on ecological theory (e.g. ecosystem models/state-and-transition
models) when trying to under stand how groups of species will respond to
impacts/management?
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