
Species archetype
models for presence-
only data
Skipton Woolley, Piers Dunstan, David
Warton & Scott Foster

25-11-2025

1 / 26



Managing anthropogentic pressures
often requires information on the
distribution of key natural values.
Presence-only datasets provide a
valuable source of information for
describing these natural values.
At broad spatial scales we often need
simple, but clear ways to quantify these
values. Ecosystems are complex
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For managing the environment inferences about ecosystem
are required. Often questions are about unobserved
properties.

Assemblages.
Ecoregions / bioregions.
Functional groups,
Species groups.
Communities.
Genetic groups

But none of these are observed. Our solution is to pose
statistical models containing these/related constructs.
Management could be targeted at a fewer latent groups
rather than a large number of individual species.

Ecosystems are complex
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Multivariate response (conditionally independent)
Mixture of regressions, aka Species Archetype Models
(SAMs)

Grouping species according to their responses to
the environment
A relatively simple model used to understand how
many species jointly respond to environmental
conditions

Clustering of species along a one dimensional gradient using SAMs

Species Archetype Models (SAMs)

4 / 26



Species Archetype Models (SAMs)
Soft assignments (probabilistic)
Intuitively:

Perform a regression on each species, then
Cluster the regression coefficients

Finite mixture models allow for a one-step process
Uncertainty propagation
Statistical efficiency
Likelihood based model selection and diagnostics
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Poisson process species archetype models
Let us define  as a vector of species  presence-only occurrences at observations at 
locations in region .
We assume there are  covariates observed at all sites .

The likelihood contribution of the  species is:

where  is a function of the conditional intensity  of species  at location , conditional on archetype .

 is the mixing proportion (satisfying  and ), determining the proportion of species classified into
each of the  archetypes.
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Poisson process species archetype models
The log-conditional intensity is modelled as:

 is the intensity function for each species, as each site, conditional on each archetype .
 represents the species specific intercept.
 represents environmental/habitat observed covariates.
 is a vector of archetype specific coefficients associated with the environmental/habitat effects.
 represents a observation bias data, e.g distance from roads.

 represents a spatial observation bias across all species occurrence records for .
 is a offset at site , and can represent differences in spatial area or even a known 'plug-in' thinned process.
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Poisson process species archetype models
We estimate this model via numerical approximation, the approximate log-likelihood for the  species and  archetype as,

 is a vector of species-specific presences,
 is a vector of  quadrature locations for each species

 stores the species-specific weights
 is the total number of presence and quadrature locations of the  species.

We used a grid based design for quadrature scheme (Berman & Turner 1992; Warton & Shepard 2010), but others could be used
(e.g. Dirichlet tessellation).

jth kth
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Poisson process species archetype models
Estimation is done via a hybrid Expectation-Conditional Maximisation and Newton-Raphson approach to estimate the
above log-likelihood (Aitkin et al., 1996; Dunstan et al., 2013).
We include in the initial starting values of , ,  and .

The steps include:

1. finding starting values and adding a small amount of random noise within the standard deviation of the estimated starting
values;

2. perform a limited number of initial ECM steps;
3. implement a Newton-Raphson maximiser until the model is converged
4. Doing this multiple fits per K (e.g. 10 fits per K)

α β δ π
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We compared a two-stage approach
(predicted and group) against a single
PPSAM.
Fitted four scenarios, each contained
1000 simulations.
Scenarios based on the rarity of species,
going from rare to more common.
Each simulation contained 100 species
within a simulated study area with a
single environmental gradient, and
single observation bias covariate.

Simulated environmental and bias gradients. Three simulated archetypal
responses.

Simulation study
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Simulation study

Estimated species-specific intercepts ` ` from the individual species-specific Poisson Processes and Poisson Process Species Archetype Models.αj
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Simulation study

Estimated archetype level estimates ` ` from the Predict First & Group approach, and Poisson Process Species Archetype Models.βk
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Simulation study

Estimated bias covariates (` `) we compared mean estimates (for each species) from Predict First & Group approach, and Poisson Process Species Archetype
Models bias value (estimated across all species).

δ
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Simulation study

Predictive performance tests from the simulation study. A) Integrated Mean Square Error (IMSE) estimates for each of the four simulations. B) Kullback-
Leibler (KL) divergence predictive scores summed across archetypes. 14 / 26



Myrtacece dataset contains 41769 occurrences
recorded for 296 species
We took the 50 most common species with at least 100
presences
We fitted either an PPSAM or 50 species-specific IPPMs
The archetypes were fitted to fire frequency (FC),
annual minimum temperature (MNT), annual maximum
temperature (MXT), annual mean rainfall (Rain)
Observation bias was fitted to distance from main roads
(D.Main) & distance from main urban centres (D.Urb).

New South Wales Myrtacece study area

New South Wales Myrtacece Case Study
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PPSAM Modelling steps.

Multiple starts across 1 to 16 species archetype groups
( )
Select model  based on BIC.
Check for groups with zero membership.
Diagnostics via random quantile residuals.

IPPM Modelling steps.

Fit species-specific IPPMs.
K-means cluster coefs.
Select  based on BIC.

BIC from PPSAM fits

New South Wales Myrtacece Case Study

k

k

k
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New South Wales Myrtacece Case Study

PPSAM Predictions
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New South Wales Myrtacece Case Study

IPPM & Cluster Predictions
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A bias towards smaller range restricted groups in two
stage approach.
Two stage approach seems to select more clusters
based on information criteria

Typically need to know the number of
groups/clusters for this approach to work (e.g. Hill
et al., 2020)

Some ecologically relevant group such as:
Wet sclerophyll forest (Archetypes 5-7)
Dry sclerophyll woodland (Archetype 2-4)
Heathland/sandplain (Archetypes 8-10)

PPSAM Predictions

New South Wales Myrtacece Case Study
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Posterior probabilties of a species
belong to an archetype/group is more
well mixed under PPSAMs
The two stage approach tends to lump
most species into the same group and
pull out extremes.

Species membership to each group

New South Wales Myrtacece Case Study
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Uncertainty quantification can be done
via bootstrapping (Cowling et al., 1996).
Two step approach fails to transfer data
variance through to prediction at the
clustering step.
Bayesian approaches could deal with
this, but you need to correct for label
switching when clustering posterior
predictions.

Uncertainty in PPSAM predictions

New South Wales Myrtacece Case Study
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We show that point process Species
Archetype Models allow for the
propagation of variance and uncertainty
from the data through to predictions.
Improving inference made on multiple
species presence-only occurrence data.
Or at least making it simpler to
understand biodiversity patterns for a
large number of species.
However, it does not account for inter-
species correlation in occurrence as you
would see in a JSDM/GLLVM.

PPSAM framework

New South Wales Myrtacece Case Study
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Currently, PPSAM does not scale well
due as number of species, archetypes
and sites grow.
Group selection/regularization is hard
and is often important for presence-only
data
Luckily approximate SAMs (asSAM) are
actively being developed to deal with
these problem (Hui et al., In prep - see
his talk tomorrow)

Some considerations and extensions
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Integrated with other data sources to help better
correct observation bias (e.g Fithian et al., 2015)
Point patterns naturally extends to spatial models

e.g. Log-Gaussian Cox Process
Latent GRF(s):

 is a Gaussian Process
(GP) with mean zero and covariance function

, capturing spatial (and temporal if in scope)
dependencies.

GRF on what? On bias? on species? on archetypes?
on multiple?
Identifiability might be a problem with many GRFs.
Approximation will be important, e.g Vecchia
approximation/basis functions.

Example of an integrated single species model using the RISDM package;
Foster et al., 2024

Some considerations and extensions

Z(s) ∼ GP(0,C(s, s′))

C
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Some considerations and extensions
How interpretable are species archetype models?

We tend to think of distribution in terms of composition, especially for characterisation
But, based on my experience experts and managers tend to think in terms of process,
or at least can conceptualise this more easily.
Do we need to cluster or bicluster over composition and functional groups which allow
us to lean heavier on ecological theory (e.g. ecosystem models/state-and-transition
models) when trying to under stand how groups of species will respond to
impacts/management?
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